Search PG Economics

Use the search below to search our website, if you can't find what you're looking for then contact us and we will do our best to help you.



Global economic benefits of GM crops reach $150 billion

Published on: 31st May 2016
Published By PG Economics

Press release: 31 May 2016: Dorchester, UK:  In the nineteenth year of widespread adoption, crop biotechnology has continued to provide substantial economic and environmental benefits, allowing farmers to grow more, with fewer resources, whilst delivering important environmental benefits for all citizens (1).  

‘Where farmers have been given the choice of growing GM crops, the economic benefits realized are clear and amounted to an average of over $100/hectare in 2014’ said Graham Brookes, director of PG Economics, co-author of the report. ‘Two-thirds of these benefits derive from higher yields and extra production, with farmers in developing countries seeing the highest gains. The environment is also benefiting as farmers increasingly adopt conservation tillage practices, build their weed management practices around more benign herbicides and replace insecticide use with insect resistant GM crops’

Highlights from this comprehensive review include: 

Higher yielding crops

  • The insect resistant (IR) technology used in cotton and corn has consistently delivered yield gains from reduced pest damage. The average yield gains over the 1996-2014 period across all users of this technology has been +13.1% for insect resistant corn and +17.3% for insect resistant cotton relative to conventional production systems. 2014 was also the second year IR soybeans were grown commercially in South America, where farmers have seen an average of +9.4% yield improvements;
  • The herbicide tolerant (HT) technology used has also contributed to increased production; improving weed control and providing higher yields in some countries and helping farmers in Argentina grow ‘second crop’ soybeans after wheat in the same growing season (2) ;

Better returns for farmers – especially in developing countries

  • Crop biotechnology helps farmers earn more secure incomes due mainly to improved control of pests and weeds. The net farm level economic benefit in 2014 was $17.7 billion, equal to an average increase in income of $101/hectare. For the 19 years (1996-2014), the global farm income gain has been $150.3 billion;
  • The total farm income benefit of $150.3 billion was divided almost equally between farmers in developing (51%) and developed countries (49%);
  • The highest yield gains continue to be for farmers in developing countries, many of which are resource-poor and farm small plots of land;

Excellent investment returns for farmers

  • Crop biotechnology continues to be a good investment for millions of farmers. The cost farmers paid for accessing crop biotechnology in 2014 ( $6.9 billion (3,4) payable to the seed supply chain) was equal to 28% of the total gains (a total of $24.6 billion). Globally, farmers received an average of $3.59 for each dollar invested in GM crop seeds; 
  • Farmers in developing countries received $4.42 for each dollar invested in GM crop seeds in 2014 (the cost is equal to 23% of total technology gains), while farmers in developed countries received $3.14 for each dollar invested in GM crop seed (the cost is equal to 32% of the total technology gains). The higher level of technology gains realised by farmers in developing countries relative to farmers in developed countries reflects weaker provision of intellectual property rights coupled with higher average levels of benefits in developing countries;

Reduced pressure on scare land resources and contribution to global food security

  • Between 1996 and 2014, crop biotechnology was responsible for additional global production of 158.4 million tonnes of soybeans and 321.8 million tonnes of corn. The technology has also contributed an extra 24.7 million tonnes of cotton lint and 9.2 million tonnes of canola;
  • GM crops are allowing farmers to grow more without using additional land. If crop biotechnology had not been available to the (18 million) farmers using the technology in 2014, maintaining global production levels at the 2014 levels would have required additional plantings of 7.5 million ha of soybeans, 8.9 million ha of corn, 3.7 million ha of cotton and 0.6 million ha of canola. This total area requirement is equivalent to 12% of the arable land in the US, or 33% of the arable land in Brazil or 14% of the cropping area in China;

Environmental improvements

  • Crop biotechnology has contributed to significantly reducing the release of greenhouse gas emissions from agricultural practices. This results from less fuel use and additional soil carbon storage from reduced tillage with GM crops. In 2014, this was equivalent to removing 22.4 billion kg of carbon dioxide from the atmosphere or equal to removing 10 million cars from the road for one year;


  • Crop biotechnology has reduced pesticide spraying (1996-2014) by 581 million kg (-8.2%). This is equal to the total amount of pesticide active ingredient applied to crops in China for more than a year (5) . As a result, this has decreased the environmental impact associated with herbicide and insecticide use on the area planted to biotech crops by 18.5% (6) .

For additional information, contact Graham Brookes Tel +44(0) 1432 851007.

Infographics (PDF):

Crop Biotechnology allows farmers to grow more on less land

Crop Biotechnology has enabled an increase in production since its introduction in 1996

Crop Biotechnology reduces greenhouse gas emissions by using less fuel and tilling less soil

GM Crops offer excellent return on investment especially for farmers in developing countries


1 - Report available to download at Also contents available as two papers (with open access), separately, covering economic and environmental impacts, in the peer review journal GM Crops at ((ISSN 2164-5698 (Print), 2164-5701 (Online)) - GM Crops forthcoming in 7:1, issue 1, Jan-March 2016 Global income and production impacts of using GM crop technology 1996–2014 and vol 7.2, issue 2, April-June 2016 Environmental impacts of genetically modified (GM) crop use 1996-2014: Impacts on pesticide use and carbon emissions -

2 - By facilitating the adoption of no tillage production systems this effectively shortens the time between planting and harvest of a crop

3 - The cost of the technology accrues to the seed supply chain including sellers of seed to farmers, seed multipliers, plant breeders, distributors and the GM technology providers

4 - A typical ‘equivalent’ cost of technology share for non GM forms of production (eg, for new seed or forms of crop protection) is 30%-40% 

5 - Equal to 1.25 times annual use

6 - As measured by the Environmental Impact Quotient (EIQ) indicator (developed at Cornell University)

PG Economics: 31st May 2016 09:00:00

Download PDF Version | Download Full Report

Biotechnology Adoption In Corn Cultivation In Vietnam Shows Positive Impacts Of Higher Productivity, Increased Farmer Income And Environmental Improvement.

Biotechnology adoption in corn cultivation in Vietnam shows positive impacts of higher productivity, increased farmer income and environmental improvement. WORKSHOP: CONTRIBUTIONS OF AGRICULTURAL BIOTECHNOLOGY ADOPTION IN VIETNAM

First Study Of Impact Of Using Biotech-gm Maize In Vietnam Highlights Substantial Economic And Environmental Benefits

First study of impact of using biotech/GM maize in Vietnam highlights substantial economic and environmental benefits. Highlights in the peer reviewed paper include: 225,000 hectares have been planted to maize containing GM traits in Vietnam since 2015 and in 2019, the technology was used on 10.2% of the total maize crop. The technology has enabled Vietnamese farmers to obtain higher yields from better pest and weed control: the GM varieties out-performed conventional varieties by +30.4% (+15.2% if the yield comparison is with only the nearest performing equivalent conventional varieties). The extra production and reduced cost of pest and weed control have provided maize farmers with higher incomes equal to an average of between US $196 per ha (relative to equivalent conventional varieties) and US $330 per ha (average of all conventional varieties). In terms of investment, for each extra US dollar invested in GM maize seed (relative to the cost of conventional seed), farmers gained an average of between US $6.84 and US $ 12.55 in extra income. These levels of return are at the higher end of the range of performance for similar maize seed GM technology in other adopting countries. Aggregate farm incomes have increased by a total of between US $43.8 million (based on the yield gains relative to the nearest equivalent conventional varieties) and US $74.1 million (based on yield gains relative to all conventional varieties). The maize seed technology has reduced insecticide and herbicide spraying. The average amount of herbicide active ingredient applied to the GM crop area was 26% lower than the average value for the conventional maize area and in terms of the associated environmental impact of the herbicide use[3], it was lower by 36% than the average value applicable to the conventional maize area. Insecticides were used on a significantly lower GM crop area and, when used, in smaller amounts. The average amount of insecticide applied to the GM maize crop was 78% lower than the average value for the conventional maize area and, in terms of the associated environmental impact of the insecticide use, it was also lower by 77%.

Crop Biotechnology Continues To Provide Higher Farmer Income And Significant Environmental Benefits

PG Economics Report 2020 - Farmers who planted genetically modified (GM) crops increased their incomes by almost $19 billion in 2018 and reduced carbon emissions by 23 billion kilograms or the equivalent of removing 15.3 million cars from the roads that year. The higher income represents $4.42 in extra income for each extra dollar invested, according to a report released today by PG Economics.

New Paper Quantifies 15 Years Of Economic And Environmental Benefits From Using Biotech-gm Crops In Colombia[1]

Highlights in the peer reviewed[2] paper include: About 1 million hectares have been planted to cotton and maize containing GM traits in Colombia since 2003 and in 2018, the technology was used on the equivalent of 90% and 36% respectively of the total cotton and (commercial) maize crops. Use of this technology has enabled Colombian farmers to obtain higher yields from better pest and weed control (+30.2% from using stacked - herbicide tolerant and insect resistant cotton and +17.4% from using stacked maize). The extra production and reduced cost of pest and weed control have provided maize farmers with higher incomes equal to an average of US $294/ha and an average return on investment equal to +US $5.25 for each extra US $1 spent on GM maize seed relative to conventional seed. For cotton farmers, the average increase in income has been + US $358/ha, with an average return on investment equal to +US $3.09 for each extra US $1 spent on GM seed relative to conventional seed. Farm incomes have increased by a total of just over US $300 million since 2003. The cotton and maize seed technology have reduced insecticide and herbicide spraying by 779,400 kg of active ingredient (-19%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops (as measured by the indicator, the Environmental Impact Quotient (EIQ)) by 26%. The technology has also facilitated cuts in fuel use, resulting in a reduction in the release of greenhouse gas emissions from the GM cotton and maize cropping area and contributed to saving scarce land resources.